Using genetics to understand the relationship between young people’s health and educational outcomes

Amanda Hughes, Kaitlin H. Wade, Matt Dickson, Frances Rice, Alisha Davies, Neil M. Davies & Laura D. Howe

Follow Amanda, Kaitlin, Matt, Alisha, Neil and Laura on twitter

Young people with health problems tend to do less well in school than other students, but it has never been clear why. One explanation is that health problems directly damage educational outcomes. In that case, policymakers aiming to raise educational standards might want to focus first on health as a means of improving attainment.

But are there other explanations? What if falling behind in school can affect health, for instance causing depression? Also, many health problems are more common among children from less advantaged backgrounds – for example, from families with fewer financial resources, or whose parents are themselves unwell. These children also tend to do less well in school, for reasons that may have nothing to do with their own health. How do we know if their health, or their circumstances, are affecting attainment?

It is also unclear if health matters equally for education at all points in development, or particularly in certain school years. Establishing how much health does impact learning, when, and through which mechanisms, would better equip policymakers to improve educational outcomes.

Photo by Edvin Johansson on Unsplash

Using genetic data helps us understand causality

Genetic data can help us answer these questions. Crucially, experiences like family financial difficulties, which might influence both a young person’s health and their learning, cannot change their genes. So, if young people genetically inclined to have asthma are more absent from school, or do less well in their GCSEs, that would strongly suggest an impact of asthma itself. Similarly, while falling behind in school might well trigger depression, it cannot change a person’s genetic propensity for depression. So, a connection between genetic propensity for depression and worse educational outcomes supports an impact of depression itself. This approach, of harnessing genetic information to better understand causal processes, is known as Mendelian randomization.

To find out more, we investigated links between

  • health conditions in childhood and adolescence
  • school absence in years 10 & 11
  • and GCSE results.

We used data from 6113 children born in the Bristol area in 1991-1992. All were participants of the Avon Longitudinal Study of Parents and Children (ALSPAC), also known as Children of the 90s. We focused on six different aspects of health: asthma, migraines, body mass index (BMI), and symptoms of depression, of attention-deficit hyperactivity disorder (ADHD), and of autism spectrum disorder (ASD). These conditions, though diverse, have two important things in common: they affect substantial numbers of young people, and they are at least in part influenced by genetics.

Alongside questionnaire data and education records, we also analysed genetic information from participants’ blood samples. From this information, we were able to calculate for each young person a summary score of genetic propensity for experiencing migraines, ADHD, depression, ASD, and for having a higher BMI.

We used these scores to predict the health conditions, rather than relying just on reports from questionnaire data. In this way, we avoided bias due to the impact of the young people’s circumstances, or of their education on their health rather than vice versa.

Even a small increase in school absence predicted worse GCSEs.

We found that, for each extra day per year of school missed in year 10 or 11, a child’s total GCSE points from their best 8 subjects was a bit less than half (0.43) of a grade lower. Higher BMI was related to increased school absence & lower GCSE grades.

Using the genetic approach, we found that young people genetically predisposed towards a higher BMI were more often absent from school, and they did less well in their GCSEs. A standard-deviation increase* in BMI corresponded to 9% more school absence, and GCSEs around 1/3 grade lower in every subject. Together, these results indicate that increased school absence may be one mechanism by which being heavier could negatively impact learning. However, in other analyses, we found a substantial part of the BMI-GCSEs link was not explained by school absence. It’s unclear which other mechanisms are at play here, but work by other researchers has suggested that weight-related bullying, and negative effects of being heavier on young people’s self-esteem, could interfere with learning.

*equivalent to the difference between the median (50th percentile) in population and the 84th percentile of the population

Diagram showing the pathways through which higher BMI could lead to lower GCSEs; either through more schools absence aged 14-16, or other processes such as weight-related bullying.
Our results suggest increased school absence may partly explain impact of higher BMI on educational attainment, but that other processes are also involved.

ADHD was related to lower GCSE grades, but not increased school absence.

In line with previous research, young people genetically predisposed to ADHD did less well in their GCSEs.  Interestingly, they did not have increased school absence, suggesting that ADHD’s impact on learning works mostly through other pathways. This is consistent with previous research highlighting the importance of other factors on the academic attainment of children with ADHD, including expectations of the school environment, teacher views and attitudes, and bullying by peers.

We found little evidence for an impact of asthma, migraines, depression or ASD on school absence or GCSE results

Our genetic analyses found little support for a negative impact of asthma, migraines, depression or ASD on educational attainment. However, we know relatively little about the genetic influences on depression and ASD, especially compared to the genetics of BMI, which we understand much better. This makes genetic associations with depression or ASD difficult to detect. So, our results should not be taken as conclusive evidence that these conditions do not affect learning.

What does this mean for students and teachers?

Our findings provide evidence of a detrimental impact of high BMI and of ADHD symptoms on GCSE attainment, which for BMI was partially mediated by school absence. When students sent home during the pandemic eventually return to school, the impact on their learning will have been enormous.  And while all students will have been affected, our results highlight that young people who are heavier, who have ADHD, or are experiencing other health problems, will likely need extra support.

Further reading

Hughes, A., Wade, K.H., Dickson, M. et al. Common health conditions in childhood and adolescence, school absence, and educational attainment: Mendelian randomization study. npj Sci. Learn. 6, 1 (2021). https://doi.org/10.1038/s41539-020-00080-6

A version of this blog was posted on the journal’s blog site on 21 Jan 2021.

Contact the researchers

Amanda Hughes, Senior Research Associate in Epidemiology: amanda.hughes@bristol.ac.uk

COVID19 – should schools close early for Christmas?

Sarah Lewis, Marcus Munafo and George Davey Smith

 

 

We have previously written about the limited risk posed to pupils, teachers and the community by schools being open during the Covid19 pandemic. Schools have now been open for almost a full academic term (3 months), so it is time to take another look at the evidence.

School re-openings have coincided with an increase in Covid19 infection rates across all UK nations. This rise in infection rates was anticipated, given the annual pattern of rising respiratory infections in the autumn term. There was also a rapid increase in Covid19 testing rates as children returned to school and presented with mild symptoms. Rates of positivity among children were very low at first, but a rise was observed over the autumn. This corresponded with an increase in rates among adults, and there seems to be a strong correlation between Covid19 positivity in schools and rates in the local community.

But has transmission of Covid19 in schools driven the second wave? And should schools be closed again to reduce infection in the community?

This post argues that there is little case for closing schools, as

  • Schools don’t seem to drive transmission in the community
  • The risk of the virus to most school children is very low
  • The harms of school closures are wide ranging.
Photo by CDC on Unsplash

Infection rates among children have been low

Since September children with COVID19 symptoms have been asked to stay at home and have a test before returning to school. Tests equating to 10% of the school pupil population were carried out during first half term in Scotland; only 0.2% of pupils tested positive during this period. Similarly high volumes of testing have been carried out in Wales, but only 0.6% of pupils tested positive between 1st September and 9th December 2020. Pupils made up 3.5% of cases in Wales over that period, despite making up 16% of the population.

However, the weekly Covid19 incidence among 12-16 year olds in Wales was similar to the national average for the week ending 9th December 2020, suggesting a change in the age demographic of cases.

Transmission levels in school have been low

It is unclear what proportion of children who tested positive contracted the infection in school – many children have similar social circles both in and out of school. When infections are found in schools, most schools have only 1 or 2 cases within a 2-week period (unless levels in the local community are high). This suggests low levels of transmission in schools.

Children and adults have different symptoms

Comparisons of rates of infection between children and adults should be treated with caution. Cases are diagnosed using recognised Covid19 symptoms, and are influenced by the volume of testing in the community. Younger children seem to be less likely to have symptoms – around 50% of infected children tend to be completely asymptomatic.  They also may have somewhat different pattern of symptoms to adults – fatigue, gastrointestinal symptoms, and changes in sense of smell or taste, but only rarely a cough. Therefore, studies relying on symptoms in children may be unreliable.

Random testing is the best way to find out level of infection

Surveys show that while young adults had the highest levels of infection in September, secondary school pupils now have the highest rates.

Studies which test individuals at random in the community are more reliable indicators of the levels of infection among children compared to adults. The UK Office of National Statistics (ONS) infection survey has been randomly testing people from the community since early May. It showed that young adults (school year 11 to age 24) had the highest positivity rates in September. This became more pronounced in early October when universities re-opened to students. By the end of October, rates among secondary school pupils were similar to those in young adults, at around 2%. Secondary school pupils now have the highest rates. Covid19 positive rates among primary school children are about half those in secondary school children and have barely changed since the beginning of the academic year.

Infection rates among teachers

There is no evidence that teachers are more at risk of death from COVID19, and infection rates among teachers do not seem higher than other professions.

ONS data from the first wave of the COVID19 epidemic in the UK showed that teachers were not at increased risk of death from the disease compared to other professionals. Based on ONS data, during October those working in the education sector had an antibody positivity rate of 8.1% (95% CI 5.9-10.8) compared with 6.5% (95% CI 5.9-7.3) among those working in other professions. This suggests perhaps slightly higher infection rates, but this is estimated with uncertainty.

Infection positivity rates – also measured by the ONS survey –  from 2nd September to 16th October showed that teachers were no more likely to test positive than other professions, although again there was a lot of uncertainty in these estimates*.  The Swedish Public Health Agency have linked data on Covid19 infection to occupational data and found no increase in infection rates among teachers, although there was some evidence of an increase in infection rates among teaching assistants, school counsellor and  headteachers. However, infection rates may have been inflated relative to other profession if there is  increased testing among asymptomatic people in the education sector.

Photo by Jeswin Thomas on Unsplash

Could infections in schools be driving community infection rates?

The evidence suggests this is unlikely.

Infection rate increases appear to coincide with school openings, but the R-number was increasing in Scotland and England before school openings. Hospital admissions due to Covid19 had also started to rise before this point. In September, positivity rates were initially highest among young adults, not among children of school age, suggesting that perhaps infections among school children were not driving community rates. The ONS data showed infection rates levelling off over October half term, and climbing again among young adults and secondary school children after half term. However, this trend was not as marked in primary school children, and was not observed in adults, even amongst the 35-49 year age group, to which many parents of school aged children belong. Another study of community-based testing – the REACT-1 study – found a greater decrease in infections among younger children compared with older children following the October half term holiday, but again there was a lot of uncertainty in this estimate.

Contact mixing patterns show that people tend to have the most contacts within the same age group, followed by the age group closest to them. Children have more opportunities to pass on the infection to other children and young adults, and are not significantly influencing rates in older adults.

The current R-number in England is currently estimated to be slightly below 1 despite schools being open. This shows that it is possible to drive down infection rates in the community whilst keeping schools open. Furthermore, when everything else but schools are closed – such as in the case of the national lockdown which occurred in England in November, school children will have more contacts than anyone else and schools will contribute to relatively more transmissions in the community even if transmission rates are low overall.

Closing schools is not the answer

Rates have recently fallen among adults in England, despite schools remaining open and secondary school rates increasing. The evidence suggests low levels of virus transmission within schools. First Minister of Wales Mark Drakeford recently said that behavioural evidence suggests closing schools could place some children “in even riskier environments”. Children being looked after by their grandparents rather than being in school would be more dangerous in terms of the virus being transmitted to a higher risk group.

Any public health intervention should consider the costs as well as the benefits. We know that school closures have wide ranging adverse consequences for children and families as outlined by UNESCO, and such costs are particularly pronounced for the poorest and most vulnerable children in society. Children:

  • who do not have access to technology to participate in online learning
  • whose parents who do not have the resources or the educational background to help

have been shown to fall further behind following school closures. Evidence suggests that children’s mental health deteriorated during the first lockdown, and that vulnerable children were at greater risk of violence and exploitation. School closures can also cause economic hardship due to parents being unable to work.  This has prompted Robert Jenkins Global Chief of Education at UNICEF to issue a statement over the last few days saying:

“Evidence shows that schools are not the main drivers of this pandemic. Yet, we are seeing an alarming trend whereby governments are once again closing down schools as a first recourse rather than a last resort. In some cases, this is being done nationwide, rather than community by community, and children are continuing to suffer the devastating impacts on their learning, mental and physical well-being and safety”.

If schools being open are not major drivers of transmission in the community (which they don’t appear to be), given that the risk of the virus to most school children is very low, there is very little case for closing them given the potential harm this could cause.

Footnote: Secondary schools in Wales were closed early for Christmas on the 11th December 2020

*(estimates ranged from 0.2% (95%CI=0.07-0.53) for primary school teachers to 0.5% teachers of unknown type (95% CI=0.36-0.69) compared with 0.4% (95%=0.39-0.49) for all other professions)

How has the COVID-19 lockdown affected children born with a cleft lip/palate?

Written by the Cleft Collective Team

Follow the Cleft Collective on twitter.

The COVID-19 pandemic has been difficult for many families and there is widespread concern about how the lockdown might have affected children’s health, wellbeing and education. This concern may be even greater for families of children with pediatric health conditions such as cleft lip and/or cleft palate.

The Cleft Collective cohort study, linked to the IEU, is a UK-wide research study of the causes and consequences of being born with a cleft, which is a gap in the lip or roof of the mouth. In response to the COVID-19 lockdown, the Cleft Collective team sent out a questionnaire asking parents about how the lockdown had affected their children’s surgeries and treatments, access to schooling and wellbeing.

The first results are summarised in this infographic, which highlights that many children suffered delays in their surgeries and other health care appointments due to the lockdown. They also struggled with homeschooling, worries and negative emotions.

Through links to the NHS cleft teams and the Cleft Lip and Palate Association charity (CLAPA), the Cleft Collective team are sharing their findings with healthcare professionals to help ensure that children born with a cleft are given appropriate support to help them through this time and to lead happy, healthy childhoods.

The Cleft Collective cohort study is based in the MRC Integrative Epidemiology Unit and funded by the Scar Free Foundation and the University of Bristol. The video below explains more about the study.

How might fathers influence the health of their offspring?

Dr Gemma Sharp, Senior Lecturer in Molecular Epidemiology

Follow Gemma on Twitter

Follow EPOCH study on Twitter

A novel thing about the Exploring Prenatal influences On Childhood Health (EPoCH) study is that we’re not just focusing on maternal influences on offspring health, we’re looking at paternal influences as well.

One of the reasons that most other studies have focused on maternal factors is that it’s perhaps easier to see how mothers might have an effect on their child’s health. After all, the fetus develops inside the mother’s body for nine months and often continues to be supported by her breastmilk throughout infancy. However, in a new paper from me and Debbie Lawlor published in the journal Diabetologia, we explain that there are lots of ways that fathers might affect their child’s health as well, and appreciating this could have really important implications. The paper focuses on obesity and type two diabetes, but the points we make are relevant to other health traits and diseases as well.

The EPOCH study will look at how much paternal factors actually causally affect children’s health. Image by StockSnap from Pixabay

How could fathers influence the health of their children?

These are the main mechanisms we discuss in the paper:

  • Through paternal DNA. A father contributes around half of their child’s DNA, so it’s easy to see how a father’s genetic risk of disease can be transmitted across generations. Furthermore, a father’s environment and behaviour (e.g. smoking) could damage sperm and cause genetic mutations in sperm DNA, which could be passed on to his child.
  • Through “epigenetic” effects in sperm. The term “epigenetics” refers to molecular changes that affect how the body interprets DNA, without any changes occurring to the DNA sequence itself. Some evidence suggests that a father’s environment and lifestyle can cause epigenetic changes in his sperm, that could then be passed on to his child. These epigenetic changes might influence the child’s health and risk of disease.
  • Through a paternal influence on the child after birth. There are lots of ways a father can influence their child’s environment, which can in turn affect the child’s health. This includes things like how often the father looks after the child, his parenting style, his activity levels, what he feeds the child, etc.
  • Through a father’s influence on the child’s mother. During pregnancy, a father can influence a mother’s environment and physiology through things like causing her stress or giving her emotional support. This might have an effect on the fetus developing in her womb. After the birth of the child, a father might influence the type and level of child care a mother is able to provide, which could have a knock-on effect on child health.
There are lots of ways in which fathers might influence the health of their offspring. This figure was originally published in our paper in Diabetologia (rdcu.be/bPCBa).

What does this mean for public health, clinical practice and society?

Appreciating the role of fathers means that fathers could be given advice and support to help improve offspring health, and their own. Currently hardly any advice is offered to fathers-to-be, so this would be an important step forward. Understanding the role of fathers would also help challenge assumptions that mothers are the most important causal factor shaping their children’s health. This could help lessen the blame sometimes placed on mothers for the ill health of the next generation.

What’s the current evidence like?

In the paper, we reviewed all the current literature we could find on paternal effects on offspring risk of obesity and type 2 diabetes. We found that, although there have been about 116 studies, this is far less than the number of studies looking at maternal effects. Also, a lot of these studies just show correlations between paternal factors and offspring health (and correlation does not equal causation!).

What is needed now is a concerted effort to find out how much paternal factors actually causally affect offspring health. This is exactly what EPoCH is trying to do, so watch this space!

This content was reposted with permission from the EPOCH blog.