Marcus Munafo and George Davey Smith
Follow Marcus and George on Twitter
An important ongoing debate is whether the UK’s COVID strategy should focus on suppression (maintaining various restrictions to ensure the reproduction rate of the SARS-CoV-2 virus remains at or below 1), or elimination (reducing the number of infections to a sufficiently low level that restrictions could be removed). Independent SAGE has explicitly called for a “zero COVID UK”.
The latter is attractive, in that it brings the promise of a return to normality, rather than the ongoing maintenance of distancing measures, use of face coverings, etc. Independent SAGE has suggested that “a seven day rolling average of one new case per million per day could represent ‘control’” under a “zero COVID” regime. In other words, around 60 to 70 new cases per day across the UK.
But is “zero COVID”, in the context of ongoing large-scale testing, ever likely to be possible?
Knowing how many cases there are in a population requires testing. But even the best tests are not perfect. Unfortunately, it might be difficult to know exactly how accurate COVID tests are – the RT-PCR (antigen) tests for SARS-CoV-2 are likely to be highly specific, but in the absence of an alternative gold standard to compare these against, calculating the precise specificity is challenging
If we assume excellent specificity (let’s say 99.9%), at current levels of daily testing in the UK (74,783 tests per day processed across pillars 1 and 2, as of the 28th July update), that would mean around 75 false positive results per day even if there were no true cases of COVID in the UK. A sensitivity of 98% would mean over 1400 false positives *.
Any call for “zero COVID” needs to consider the impact of false positives on the achievability of the criterion that would constitute this, against a background of high levels of testing. Whilst testing is only one source of information that needs to be interpreted in the light of other clinical and epidemiological data, on their own they will be important drivers of any response.
As cases fall to a low level, perhaps we could reduce levels of testing (and therefore the number of false positives). But, given the high potential for substantial undocumented infection and transmission, it is likely that large-scale testing will remain essential for some time, if only to monitor the rise and fall in infections, the causes of which we still don’t fully understand.
The generic Situationist slogan “be realistic, demand the impossible” is one that many political campaigns for equality and freedom can understand.
But in many concrete situations well-meaning phrases can prove to be meaningless when scrutinised. If attempts to achieve zero COVID before relaxing restrictions leads to a delay in the reopening of schools, for example, that will result in vast increases in future levels of inequality in educational outcomes, and the future social trajectories dependent on these.
As with other endemic human coronaviruses, SARS-CoV-2 will likely show high variability and fall to very low levels within any particular population for sustained periods; it will not be permanently eliminated on a continental scale, however. Perhaps a better alternative to the setting of laudable but effectively unachievable targets is to recognise this and plan accordingly.
Marcus Munafò and George Davey Smith
* The importance of the sensitivity (and specificity) of tests for COVID antibodies has been discussed here, and the same logic broadly applies to antigen tests.